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The sharp interface that arises from any of the major transition problems (classical or 
modified Stefan, etc.) can be smoothed using the phase field approach as a numerical tool. 
The basic idea is that the thickness of the interface can be regarded as a mathematical free 
parameter which can be stretched beyond its physical value for computational convenience. 
The computations in one dimensional space and n dimensions with radial symmetry indicate 
that this is an efficient method for dealing with stiff equations and results in a very accurate 
interface determination without explicit tracking. The question of optimizing the interfacial 
thickness with respect to grid size is also considered empirically. The technique also provides 
a numerical verification of the concept of an unstable critical radius of solidification. e 1991 
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I. INTRODUCTION 

The problem of numerical computation of a moving boundary has been of 
interest in many contexts (see [ 1 ] for a recent survey). In this paper we focus our 
attention mainly on (sharp) free boundaries which arise from phase transitions. 
Using the phase held model (see [2] and references contained therein) as a tool for 
approximating these problems, we demonstrate that the sharp interface can be 
spread dramatically without significant error. In a test case for which an analytical 
solution is available a computed phase field interface easily approximates the exact 
one to within three to four digits. These results are the computational aspect of the 
theory which was introduced in Section 4 of [3]. 

The (sharp interface) free boundary problems can be described as follows. For a 
region Qclw” and t~aB+ the problem is to determine a function u(x, t) and a 
surface r(t) c Q such that the following are satisfied: 

u,=KAu in Q\r(t), (1.1) 

Iv= -K[Vu]: on r(f), 
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Here I is the latent heat, K the diffusivity, K the sum of principal curvatures at a 
point on the interface, c the interfacial (or surface) tension, and CY is a constant 
related to a relaxation time, all in dimensionless units. Also, [Vu] T is the jump in 
the gradient of u across r and v is the signed magnitude of the normal velocity 
(positive if the direction is - to +, i.e., solidification). The quantity As is the 
entropy difference between the phases, and will be equal to 4 within the normaliza- 
tion we use. 

The classical Stefan model [4] is given by (1 .l )-( 1.3) if the surface tension, (T, is 
zero. In recent years two modifications of this model have been studied [4] in an 
attempt to incorporate the effects of surface tension and dynamical undercooling. 
These are implemented by including nonzero CJ and a~ terms, respectively, in (1.3). 
The problem of numerically solving ( 1.1 )-( 1.3) is especially difficult because of the 
need to compute the curvature of the interface. One of the early attempts to com- 
pute such a model used front tracking [5] which has been developed extensively in 
recent years for a variety of sharp interface problems (see e.g. [ 133). 

An alternative approach to phase boundary problems based on the concept of an 
order parameter, cp, and Landau-Ginzburg ideas, is the phase field equations. In 
their simplest form these may be expressed as 

I 
u,+p,=KAu (1.4) 

at2cp, = S2 Aq +; (cp - cp’) + 2~3 (1.5) 

where t and a are parameters related to the microscopic physics and provide length 
scales. The macroscopic significance is in terms of the interfacial tension and 
thickness, as discussed below. These equations are subject to initial and boundary 
conditions such as 

40, f) = u,(x), cp(O, 2) = cpdx), XEQ, (1.6) 

4% t) = u,(x), cp(4 t) = cplb)? .xEasz, 00 (1.7) 

Under suitable conditions there exists a smooth solution [6] to the system 
(1.4)-( 1.7). The interface in the equations is not defined by any discontinuity but 
as the set of points given by 

I-(t)= {XE!2 cp(x, t)=O}. (1.8) 

The liquid and solid regions of Sz are then defined as regions of positive and 
negative cp, respectively. The boundary conditions (1.7) are to be chosen so that 
(p=(p+ on X2, where (P+, cp are the largest and smallest roots of 

f(u, 47)-(2a) l (q-(p3)+224=0. (1.9) 
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The relationship between the phase field equations (1.4), (1.5) and the Stefan-type 
equations (1.1 )-( 1.3) has been described in [2, 31 as a consequence of the scaling 
relations between 5, a, and CI. In particular, the surface tension, cr, and the 
interfacial thickness, E, are related by 

2E 2 
g=i,=3(a-W, E = gp. (1.10) 

The distinct models given by (l.l)-( 1.3) are then obtained by allowing E + 0 in each 
case but taking 0 + 0 only for the classical Stefan model, while c remains fixed for 
the modified problem. 

In this paper we adopt the perspective that the equations (1.4), (1.5) are a means 
of approximating, with a smooth interface, any of the sharp interface problems 
(l.l)-(1.3). The numerical results confirm that, using this approach, the interface 
can be spread significantly with a small relative change of its behaviour. For 
instance, an increase of about one order of magnitude in the interface width reduces 
the computation time by more than two orders of magnitude with little or no 
loss of accuracy, as we discuss later. The numerical experiments are for both 
one-dimensional problems and for radially symmetric annular problems in 
n-dimensional space. 

The key idea applied in our computation is that the interfacial thickness, E, can 
be varied over a broad range without significant change, provided that c and c( are 
close to the values of interest. The results can be appreciated from a physical point 
of view by considering how (1.4)(1.5) differs from (l.lt(1.3) if u and CI are the 
same in both systems. The basic physical difference is that the latent heat in 
(l.l)-( 1.3) is released on a set of measure zero while it is released on a set of thick- 
ness E in (1.4))( 1.5). The similarities are, of course, that the same amount of latent 
heat is released and the temperature at the interface is identical in both problems. 
Thus the hope of using this type of approximation rests on the ansatz that 
similarities are crucial while the differences are minimal. In fact, the release of latent 
heat over a thickness E simply assists the diffusion of heat in the interfacial region 
which removes, only slightly more quickly, the only obstacle to further solidifica- 
tion. This means that the difference between the two models in noncritical situa- 
tions should amount to a slight change in the diffusion constant. 

We test and confirm these ideas in essentially four ways: (1) We approximate 
typical melting and freezing problems in the one-dimensional classical Stefan 
problem for which one can write an exact solution. In this case the computed 
solution attains a precision of three to four digits at a small to moderate expense. 
(2) The modified Stefan problem (a # 0) is considered in an annular spherically 
symmetric domain in R”. Varying E over a wide range, but such that it does not 
create extreme computational demands, we find that the interfacial behavior does 
not change significantly provided (T remains fixed throughout the scaling. (3) Again, 
with (r # 0, we consider the sensitivity of the procedure in a delicate problem of 
unstable equilibrium of a solid sphere (at critical radius), surrounded by its melt. 



88 CAGINALP AND SOCOLOVSKY 

We find a numerical verification of this instability by slightly perturbing c and the 
initial location of the interface. A much larger change in E does not appreciably 
alter the development of the interface. (4) In the one-dimensional modified Stefan 
problem (a # 0, E # 0) the curvature is trivially zero, so that the role of the dynami- 
cal undercooling term -UCU in (1.3) can be tested independently. We demonstrate 
numerically that this converges to the classical Stefan case if and only if CKT 
approaches zero. 

The intrinsic limitation of our method also involves the size of E. If the geometry 
is very complex, e.g., in computing side-branching in dendritics, then E must be 
small in comparison with the geometric scales in order to resolve the interface. 
Since we are using a uniform mesh, this means that the cost increases. However, 
such computations are lengthy with other methods as well. Furthermore, there is no 
reason an adaptive grid (using a liner mesh in the areas closer to the interface) 
cannot be used in conjunction with our methods. 

To summarize briefly, the numerical calculations are corroborated by self-con- 
sistency, comparison with exact solutions, and known physical experiments. An 
announcement of part of this work has appeared in [7]. Other numerical work 
involving phase field equations without considering these limits includes [ 10, 111. 

II. INITIAL AND BOUNDARY CONDITIONS FOR PHASE FIELD EQUATIONS 
AND NUMERICAL PROCEDURES 

The problems we consider in this paper are either one-dimensional or spherically 
symmetric. Hence we let Y be the radial variable and Sz c R” be the annular region 
0 < A 6 r 6 B. The phase field equations [( 1.4))(1.5)] can be written as 

u,=K u,,+(n-l) 
[ 

-u. -& 
r ’ 1 1 (n- 1) q&+--y- q,+(2aPY ((p-‘p3)+25~~~2U 1 (2.1) 

(pt=a -l [ ‘Prr+(n-l) -qr+(2a52) -1(cp-q3)+2< *u . 
r 1 (2.2) 

Since we are adopting the perspective that these equations will be used as an 
approximation tool for the sharp interface problems (1.1 )-( 1.3), we need to con- 
sider the initial and (external) boundary conditions on the latter. The procedure we 
define below is a method for translating the initial and boundary conditions 
(l.l)-( 1.3) into conditions on (1.4)-( 1.5), i.e., (1.6) and (1.7). This method is quite 
general and is not restricted to the geometries of the calculations presented. 

In order to distinguish between the two models, we let u(‘) denote the solution 
to the sharp interface problems (l.l)-( 1.3), while U, cp are solutions to (1.4))(1.5). 
Since the cp variable is not in the problem (l.l)-(1.3) we let CJJ’“’ be a tracking 
variable so that 

q@)(r, t) = 
1 if r is in the liquid phase region 

_ 1 
if r is in the solid region. (2.3) 



INTERFACE COMPUTATIONS BY SPREADING 89 

Note that in the classical Stefan model q(“) can be defined simply as the sign of 1~. 
The problems (l.l)-( 1.3) are generally accompanied by initial condition u(‘)(F+, 0), 

which is continuous but may have a discontinuous gradient, and boundary condi- 
tions u~)(Y, t). Within our geometry, we can write 

uj-“(A, t) = 24A) z$‘( B, t) = ug( t). (2.4) 

The interface, which we denote by T’“‘(t), belongs to [A, B] and is prescribed at 
the initial time as the point yr, at which q(“) changes sign. 

Given the initial and boundary conditions (2.3) (2.4) for the sharp interface 
problem we now define the choice of such conditions for the phase field equations 
(1.4)-( 1.5) which are to approximate (l.l)-( 1.3). At this stage, the values of r, a, 
SI (and consequently C, E) have been set. We define U(Y, 0) as an appropriate 
mollification of u(‘)(r, 0), so that the sharp discontinuity of the derivative of ~6” 
becomes a smooth transition occurring over a distance comparable to E. In par- 
ticular, we take 

uo(r)~u(r,o)=u,+(~) (‘-‘d+(y) (r-r,)@(y) 

+(2$y (r-rl))2+(yg ,r-,,2,(~)+ ..., (2.5) 

where r0 is the initial location of the interface, and choose as smoothing function 
$(s) = tanh(5s). The coefficients in (2.5) are those of zP’(r, 0) which has an expres- 
sion identical to (2.5) but with e(s)= 1 for s>O and $(s)= - 1 for s<O. For 
consistency with (1.2)-( 1.3), a, is required to be 

with 

u- -++ +,l+. 

Note that this is merely a requirement of internal consistency of the initial condi- 
tions for the sharp interface problem and does not constitute additional conditions 
on either model. 

The smoothing of initial data is not essential for our method. One can use the 
initial conditions of the corresponding sharp interface problem directly without a 
very significant change in the computations. We have chosen to demonstrate the 
idea of smoothing of initial data because it transforms the original sharp interface 
problem into one which is entirely smooth. In some subtle problems in higher 
dimensions it is possible that this will make a substantial difference. The boundary 
conditions on u are then (to exponentially small error) identical to (2.4), so that 

+(A, t) = UA) u,(B, t) = ZfJ t). (2.6) 
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The boundary conditions on cp are determined from (2.6) and (1.9); i.e., 

where qa is the root of f(u,, qDA) = 0 closest to cp”“(A, 0) and (pB is the root of 
f(ue, cpB) = 0 near cp’“‘(B, 0). Also using these values, we then construct the initial 
value cp(r, 0) by means of the ad hoc formula 

e(r) = cp(r, 0) = 

i 

(PAY A<r<r, 

~(P(r2~o)-(PA1(r-rl)/(r2-rl)+(PA~ r,<r-=cr, 

sign(cp,) tanh((r - ro)/2E), r2 Q r < r3 (2.8) 

Cdr3, 0) - cpJ(r- r4)/(r3 - r4) + vBy r,<r<r, 

YB, r,<r<B, 

where r. is the initial location of the interface and 

rl = $A + bra, r2 = $(A + ro), r3 = i(B+ ro), r4=iB+iro. 

Note that cpO is just a piecewise smooth approximation of cpcs’(r, 0) that makes the 
transition occur smoothly over a distance comparable to lO.s, plus an adjustment 
for the precise boundary conditions. In particular, the value of cp near the external 
boundaries r = A, B must be such that f(u, rp) = 0 so that the derivatives of cp are 
close to zero. 

Our expectation is that the natural evolution of the phase field equation is 
captured by these regularizations of initial and boundary conditions, thereby 
improving the accuracy for the entire problem. 

The computational procedure is as follows. First the sharp interface problem to 
be studied is fixed. Then entering 5, a, and CI the initial and boundary values for u 
and cp are calculated and Eqs. (1.4))(1.5) are solved. To obtain more accurate 
results, it is only necessary to compute with smaller values of 4 and a, subject to 
the scaling of (1.10). 

At this stage our principal objective is to validate our approach. The computa- 
tions for Eqs. (1.4)-(1.5) were done with PDECOL, a general package to solve 
nonlinear PDEs that uses the method of lines with collocation in space, see [S]. 
We are studying more specific computational techniques for this problem, for 
example, an unconditionally stable scheme based on the semigroup approach of 
[9]. We shall report on these results elsewhere. 

III. APPROXIMATING A MODIFIED STEFAN MODEL 

A problem of considerable interest in phase boundaries is the sharp interface 
problem posed by (l.l)-( 1.3) in which c and rl are nonzero. This problem, which 
is often part of a larger set of equations in a more complex system, is difficult to 
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study numerically because of the need to compute the curvature of the interface at 
all of the interface nodes for every time step. In this section we present results which 
demonstrate that (l.l)-(1.3) can be approximated by a diffuse interface via the 
phase field equations (1.4), (1.5) and the scaling relations (1.10). The parameters i’ 
and a must be adjusted so that c is the given (fixed) value of surface tension. In 
principle, the interfacial thickness, E, is a physical quantity which is often extremely 
small (in our dimensionless length scale). However, our key physical ansatz is that 
the value of E can be changed drastically without significant change in the evolution 
of the interface, as discussed in Section 1. The situation for B, however, is quite 
different, since even a small change in the surface tension generally results in a 
substantial change in the results (see Sections IV, V). 

Given CJ, from (1.10) E and 5 are determined by choosing a. The limitations on 
a are given by two constraints. First the cp roots of (1.9) must have the proper 
qualitative behaviour, i.e., three distinct real roots which means that a cannot be 
large. Second, there must be enough points at the interface so that J (cp’)’ dr can be 
determined accurately and remains constant in time, since it essentially is the 
surface tension. The limitation on the number of points and the stiffness of the 
equations imply that CI is not too small. With a uniform mesh, empirically we found 
that the optimal mesh spacing Ar is such that E is between 0.75 Ar and 1.1 Ar. 

Next, the initial and boundary conditions are determined following the procedure 
in Section 2. Given the initial conditions zP)(r, 0), (P(“(Y, 0), and the boundary con- 
ditions (2.3)-(2.4) with (2.5)-(2.8) we obtain the associated initial and boundary 

FIG. 1. Computed interfaces for the modified Stefan problem with o = 0.08533. From top to bottom 
the curves correspond to E = 0.00128, E = 0.02048, and E = 0.04608. 
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Experiment a 

1 0.36 
2 0.16 
3 0.01 

TABLE I 

0 = 0.0853 

i’ r’ 

0.0768 0.04608 
0.05 I2 0.02048 
0.0128 0.00128 

Total 
intervals 

80 
100 
800 

Ratio 
E/AT 

3.6864 
2.048 
1.024 

conditions uO, cp,,, u,?, cp?. Thus (1.4), (1.5), (2.5)-(2.8) can now be studied as a 
complete parabolic system. 

We note that for each value of c: we obtain a different physical problem. Further- 
more, for any nonzero E Eq. (1.4), (1 S) differ physically from the sharp interface 
problems (1.1))( 1.3). The main difference is that the latent heat is released over an 
interface width of about 10~. There is another difference in that the heat equation 
is only approximately valid in the solid and liquid regions. Our conjecture that 
neither of these is as important as ensuring the correct interfacial relation, (1.3), can 
be tested by varying F in typical melting and freezing problems. In a prototype case, 
we take the three-dimensional annular region 1 6 r Q 2, and assume that the inter- 
face is initially at Y = 1.3 and that the initial conditions favor melting. We vary E 
over a broad range and examine the differences in the evolution of the interface. 
Figure 1 illustrates the results. 

For simplicity we took K = I= a = 1 and only the first three terms of (2.5) were 
used with left slope b, = 0.05 and right slope b, = 0.1. The rest of the data is in 
Table I. The self-consistency evident in Fig. 1 confirms our ansatz. For larger values 
of E, the interface is thicker and the latent heat is dissipated slightly more rapidly 
from the interface. However, this small change in the dissipation rate makes a 
minor difference in the latent heat balance (1.2) (which is implicitly part of the 
phase field equations) and even less for (1.3), since the temperature itself is likely 
to change very slightly due to the change in thickness. Thus, the main controlling 
mechanism for the growth of the interface, (1.3) is not significantly altered for 
different values of E with (T held fixed (see Table I). 

IV. APPROXIMATING THE CLASSICAL STEFAN MODEL-COMPARISON WITH 
EXACT SOLUTIONS 

The classical Stefan model is defined by (l.l))( 1.3) with CJ z 0. In the scaling limit 
CJ + 0, E + 0 (see (l.lO)), the phase field equations (1.4)-( 1.5) approach the classical 
Stefan model [3]. Physically, this means that both the surface tension and inter- 
facial thickness approach zero. As discussed in Section I, the goal is to make c 
as close to the actual value (zero in this case) while making E no smaller than is 
practical for computation. 
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TIME 

FIG. 2. Computed interfaces for the classical Stefan problem with u = 0.08533. From top to bottom 
the curves correspond to E = 0.04608, E = 0.2048, and E = 0.00128. 

Given a set of initial and boundary conditions for the classical Stefan model, the 
corresponding set of conditions for (1.4)-(1.5) have been obtained in a slightly dif- 
ferent way from that which is described in Section II. Instead of (2.5), the given 
initial condition for u is used. The absence of smoothing is compensated in part by 
the grid resolution and the condition that the piecewise polynomials used in the 
computations are at least C’ at the gridpoints. 

In Fig. 2 we again observe the self-consistency as we vary E by a factor of 36. 
With the package and machine used in the computations, the CPU time changed 
by a factor of 560, mainly due to the increased stiffness of the equations. 

The classical Stefan model offers the possibility of testing our ideas against exact 
solutions of the form 

u(“)(x, t) = 
i 

C, Cerf( b/2) - erf(r/2 JiTQ] erf( p/2) if r<~(t), 220 

C2Cerf(8/2)-erf(d2 Jt+to)l/Cl -erf(bP)l if r>s(t), t>O 

with interface 

where j3 is the solution of 
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TIME 

FIG. 3. Exact and computed interface for the classical Stefan problem with cr=O.O0533 and both 
E = 0.00512 and E =0.00128. 

For our computations we chose A = 0, B = 1, C, = -0.085, C2 = -0.015, 
fi = 0.396618, and to = 0.15 so that our boundary conditions become 

40, t) = c, > u( 1, 2) = zP( 1, t) 

i arc cos(6 J? au( 1, t)) . 

The results displayed in Fig. 3 show excellent agreement in the location of the 
interface and correspond to experiments 1 and 4 of Table II. In Experiment 2 we 
increased the number of gridpoints and found the difference with the results of 
Experiment 1 to be negligible. This confirms that the accuracy of the approximation 

TABLE II 

cr=o.O053 

Experiment a 5 

Relative error 
for interface Mesh intervals 

E Maximum I=1 Total E/AT 

1 0.64 0.0064 0.00512 0.003726 0.000823 200 1.024 
2 0.64 0.0064 0.00512 0.003915 O.OCO817 500 2.56 
3 0.32 0.0045255 0.00256 0.001936 0.001787 300 0.768 
4 0.16 0.0032 0.00128 0.003113 0.003104 500 0.64 
5 0.0625 0.002 0.0005 0.069093 1000 0.5 
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/ / I I 
4 0.5 0.6 0.7 0.8 0.9 I.0 

DISTANCE 

FIG. 4. Exact and computed solution for the classical Stefan problem with (r = 00533 and E = 0.00512. 

1 

t 
, 5 I- 0. 4 0.5 0.6 0.7 0.6 O 3 1.0 

DISTRNCE 

FIG. 5. Exact and computed solution for the classical Stefan problem with d = 0.00533 and E = 0.00128. 

581/95/l-7 
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depends almost exclusively on c and F. In Experiments 3 and 4, E is decreased, 
which insignificantly lessens the accuracy of the interface, but improves slightly the 
accuracy of the solution (u, cp). This is illustrated in Figs. 4 and 5, which correspond 
to Experiments 1 and 4, respectively. Decreasing E further in Experiment 5, the 
increase in stiffness and low grid resolution destroys the accuracy of the computa- 
tions before t = 1 is reached. 

The one-dimensional problem also offers an opportunity to examine the influence 
of the kinetic undercooling term (--au in (1.3)), since the curvature K vanishes in 
this geometry. This effect is clearly observed in Fig. 5. Our experiments repeatedly 
confirm that a is the parameter that determines the accuracy of the approximation, 
while the role of E is secondary and should not be made unnecessarily small. 

V. OPTIMIZING INTERFACIAL THICKNESS AND GRID SIZE 

We pursue the issue of selecting the interfacial thickness E in the conjunction with 
the selection of mesh size Ar. Throughout our computations we have used uniform 
meshes. The rationale for this decision is that to use an adaptive grid requires either 
tracking the interface (at least approximately), or implementing some other 
criterion to determine where to concentrate gridpoints. Our objective is to choose 
E and Ar that yield the most accurate results at a reasonable computational cost. 

The physical problem specifies the value of the surface tension a which by (1.10) 
satisfies a = $&a -‘. The constraint on a is that it is small enough so that (1.9) has 
three distinct real roots, which is their correct qualitative structure. As E and a are 
made smaller the phase field equations approximate the sharp interface problems 
better. Essentially, the reasons are that the latent heat is released along a thinner 
region and that the heat equation is more accurately approximated away from the 
interface. 

On the other hand, the surface tension is given (to first order) by 

where c$” is the first-order inner solution to (1.5) in the inner or “stretched” variable 
p = r/E, with r normal to the interface. An accurate evaluation of this quantity is 
essential from a physical point of view, hence it is necessary to have enough grid- 
points on the interfacial region where cp makes its transition to determine its inter- 
nal structure precisely. Furthermore, it is clear from (2.1)-(2.2) that the stiffness of 
the equation is proportional to E-~. 

An optimal choice of E and Ar is done by balancing the above competing factors. 
Our computationally verified conjecture is that a moderate stiffness and an 
adequate ratio for (E/AT) are more important than taking E very small. Physically 
the reason is that surface tension is more critical than how the latent heat is 
released or the precise validity of the heat equation away from the interface. We 
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have observed that if the grid resolution is too low, even for moderate values of E, 
the results lose their accuracy. Also if E is too small, even with a good ratio c/Ar, 
the results do not improve and the computational cost is much higher due to the 
increased stiffness. For example, we repeated Experiment 5 of Table II with a ratio 
E/Ar = 1 and time up to t = 0.1. The maximum relative error for the interface was 
0.001873 as opposed to 0.001373 in Experiment 4 for the same time interval. The 
time interval is & the time interval of Experiment 4, yet it required 1.17 times the 
CPU time of Experiment 4. Moreover, Experiment 4 required 8.59 times more CPU 
time than Experiment 2, and since the number of gridpoints is the same, this gives 
further evidence of the cost of increased stiffness. The most suitable value for 
the ratio c/Ar was determined empirically and we found that it is in the range 
0.75 <c/Ar < 1.1. 

VI. THE CRITICAL RADIUS INSTABILITY OF SOLIDIFICATION 

We now discuss a well-known instability in materials science. Our purpose is 
twofold. First, we provide computational justification for this instability. Second, 
we use this subtle problem to validate our approach. In particular, the numerical 
experiments verify that the interface thickness can be varied greatly even in this 
delicate problem without significant change in the interface motion. 

The physical problem can be described as follows. A solid sphere is in equi- 
librium with its melt. Mathematically, this means that the sphere has as its sum of 
principal curvatures, x0, and both the solid and liquid are at constant temperature 
u. given by 

u(j = - a,k-,/4 (5.1) 

which is the Gibbs-Thomson relation for an interface in equilibrium. The velocity 
of the interface is zero in this case and clearly Eqs. ( 1.1 )-( 1.3) are satisfied. A 
hypothetical experiment shows, however, that this equilibrium is unstable [12]. 
Suppose the constants I and K are adjusted so that only a small amount of heat 
remains near the interface after solidification (i.e., I is small while K is large). If the 
sphere is perturbed to a slightly larger one (i.e., kg is perturbed to K, where ICY < Q) 
then (5.1) is no longer satisfied. If the physical problem is governed by (l.l)-( 1.3) 
then (1.3) implies that 

v= -(Asu+aic)/tm>O. (5.2) 

This means that further solidification will occur. If the system is subjected to 
Dirichlet boundary conditions and I, K ~ ’ are small, then one expects that the 
material will continue to freeze until it is all solid. Note that perturbing g to a 
smaller value will have the same effect, although this is a computational but not a 
physical perturbation, since surface tension is a property of the material. In the 
opposite direction, i.e., pi > x0, one has complete melting in an analogus way. This 
instability is confirmed numerically as discussed below. 
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I: 
+- 

1.10 I.15 1.20 1.25 1.30 1.35 ,.*o I.45 1.50 
RRDlUS 

FIG. 6. Computed interfaces for critical radius instability. From top to bottom the curves correspond 
to u=O.15 and 0=0.166. 

RFIOIUS 

FIG. 7. Computed interfaces for critical radius instability. From top to bottom the curves correspond 
to a=0.15 and a=0.132. 
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TABLE III 

Experiment a 5 

1 0.16 0.09 
2 0.16 0.1 
3 0.16 0.09 
4 0.16 0.08 
5 0.16 0.09 

Initial location Ratio 
0 of interface E E/AT 

0.15 1.48 0.036 1.2 
0.166 1.48 0.04 8.0 
0.15 1.52 0.036 1.2 
0.132 1.52 0.032 6.4 
0.15 1.5 0.036 7.2 

The three-dimensional computational region is 1 < Y 6 2, with K= 10, I = 0.1, and 
CY = 1. In (5.1) the curvature is ICY = (n - 1)/r,, and, by selecting the equilibrium posi- 
tion of the interface to be r. = s, we obtain K~ = $. We took g0 = 0.15; consequently, 
the equilibrium temperature is u0 = - 0.05. The results are illustrated in Figs. 6 and 
7 and the rest of the relevant data is in Table III. 

We note that in each of the cases above, the material melts or freezes completely 
(except for a transition layer near one of the boundaries). The reason for the tran- 
sition layer is that our boundary conditions constrain it to be in a particular phase. 

In order to obtain further numerical confirmation of the concept of a critical 
radius, we assume the values uO, ICY, C, which are consistent with (5.1). In this case, 
theory implies that the interface be in unstable equilibrium. The equilibrium is most 

FIG. 8. Computed interface for critical radius instability. Unstable equilibrium at r = 1.5 for uniform 
temperature u = -0.05 and 0 = 0.15. 
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delicate when I is small and K is large for reasons discussed above. Thus in Experi- 
ment 5 of Table III we compute with these parameters and initial conditions, and 
obtain the results shown in Fig. 8. The results imply that the unstable equilibrium 
is maintained for a much longer time period (compared to Figs. 6 and 7). Even 
when E is changed by a factor of 10, one obtains approximately the same rate of 
departure from this unstable equilibrium. Thus a very small change in CJ disturbs 
unstable equilibrium much more than a large change in c. 

These results provide the first computational confirmation, to the best of our 
knowledge, of the concept of a critical radius of solidification and the resulting 
instability within the symmetry group of the sphere. Moreover, these numerics 
demonstrate that the phase field methods are quite capable of describing the inter- 
face even in the most subtle situations. In particular the spreading of the interface 
is possible without sacrificing much accuracy in this critical problem. 
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